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In solving the following problems, you are required to show all your work and provide
the necessary explanations everywhere to get full credit.

Problem 1. Evaluate the following limits if exists:
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Note: It can also be solved by doing a parameter change vx = u.
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Problem 2: Explain why the equation x’ — I5x + I = 0 has three solutions in the interval
[-4, 4] using the Intermediate Value Theorem.

Solution:




Let f(x) =x - 15x+1, which is continuous on[—4, 4]. Then f{—4) =-3, f(-1) =15, f(1)=-13, and f(4) =5.
By the Intermediate Value Theorem, f(x) =0 for some x in each of the intervals 4<x<-1 -1<x<1, and

1< x <4 That is, ¥> ~15x +1= 0 has three solutions in [—4, 4]. Since a polynomial of degree 3 can have at
most 3 solutions, these are the only solutions.

Problem 3: Evaluate the derivatives (dy/dx) of the given functions.
a. y=cos’ (ﬁ)

b. y=sin(cos (3x—1))

Solution:

Problem 4: Let f(x) = x/(x + 1). Use the definition of the derivative to find f'(x).
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Therefore f'(z) =
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Problem 5: The sides a and b of a right triangle are changing at the rates of % = =3t m/sec

m/sec and % = 2t m/sec respectively. How fast does the area of the triangle change when
a=30m and b =40 m att = 2 sec?

Solution: The area of a triangle is given by A = %ab.
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Problem 6: a) Write down a function which is continuous at x=1 but not differentiable at
x=1. b) Write down a function lirln f(x) = f(1) but f is not continuous at x = 1.
x-1—

Solution:

a) f(x)=|x—1|
x, ifx<1
b) f(x)z{o, if x> 1

Problem 7: Find the lines that are (a) tangent and (b) normal to the following curve at the
point (1, n/2): 2xy + m siny = 2w

Solution:
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(b) the normal line is ) y=s(-D=y=2x—2+3

Problem 8: Consider the graph of x% + y? = 49,
a) What would be the new equation if the graph is shifted 3 units down and 2 units left?
b) Sketch the graph of the new equation.

Solution: To make a vertical shift of 3 units down add 3 units to y value. To make a
horizontal shift of 2 units left add 2 units to x value. New equation: (x + 2)? + (y + 3)? =
49,

The original graph is a circle centered at (0,0) with radius 7. The new graph is the same circle
whose center is at (-2,-3).



Problem 9: Below is the graph of a function g(x) defined in the interval [1, 3]:
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a) At which points g(x) does not have limit?
b) At which points g(x) is not continuous?
c¢) At which points g(x) is not differentiable?

Solution:

a) None

b) x=3

¢) x=2 and x=3



