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In solving the following problems, you are required to show all your work and provide 
the necessary explanations everywhere to get full credit. 
 
Problem 1. Evaluate the following limits if exists: 

a) lim
$→&

$'$(

&'$
       b) lim

$→)
𝑥(4𝑥 − 16𝑥0 + 2) 

c) 	𝑙𝑖𝑚
$→8

9$
: ;<= $'$

     d) 𝑙𝑖𝑚
$→)

$>	;<= $>	0 $
$>;<= $

 
 

 
 
Solution:  

a)  lim
$→&

$'$(

&'$
= lim	

$→&

( $'$()( $>$()
(&'$)( $>$()

= lim	
$→&

$'$@

(&'$)( $>$()
= lim	

$→&

$(&'$)(&>$>$()
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=

lim	
$→&

$(&>$>$()
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= :
0
     

 
Note: It can also be solved by doing a parameter change 𝑥 = 𝑢.  
 

b) lim
$→)

𝑥(4𝑥 − 16𝑥0 + 2) = lim
$→)

$(B$' &C$(>0)(B$> &C$(>0)
B$> &C$(>0

=

lim
$→)

$(&C$('&C$('0)
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$→)

$('0)
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'0

B> &C> (
D(

= − &
B
 

c)  

d)  

  

Problem 2: Explain why the equation x3 – 15x + 1 = 0 has three solutions in the interval               
[-4, 4] using the Intermediate Value Theorem.  
 
Solution: 



	

	

 
 

Problem 3: Evaluate the derivatives (dy/dx) of the given functions. 

a. y = cos3 ( $
$>&

) 

b. y = sin (cos (3x – 1)) 

Solution: 
 

 
Problem 4: Let 𝑓 𝑥 = 𝑥/(𝑥 + 1). Use the definition of the derivative to find 𝒇H 𝑥 .  

 



	

	

Problem 5: The sides a and b of a right triangle are changing at the rates of JK
JL
= −3𝑡	𝑚/𝑠𝑒𝑐 

m/sec and JR
JL
= 2𝑡	𝑚/𝑠𝑒𝑐 respectively. How fast does the area of the triangle change when 

𝑎 = 30 m  and 𝑏 = 40 m  at 𝑡 = 2 sec? 
 

Solution: The area of a triangle  is given by 𝐴 = &
0
𝑎𝑏. 

 Then JW
JL
= &

0
(JK
JL
𝑏 + 𝑎 JR

JL
). So, 

JW
JL
= &

0
−6.40 + 30.4 = −60  𝑚0/𝑠𝑒𝑐 . 

 

Problem 6: a) Write down a function which is continuous at x=1 but not differentiable at 
x=1. b) Write down a function lim

$→&'
𝑓 𝑥 = 𝑓(1)  but 𝑓 is not continuous at 𝑥 = 1. 

Solution: 

a) 𝑓 𝑥 = |𝑥 − 1| 

b) f(x) = 	 𝑥,			𝑖𝑓	𝑥 ≤ 1		
0,				𝑖𝑓	𝑥 > 1  

Problem 7: Find the lines that are (a) tangent and (b) normal to the following curve at the 
point (1, π/2): 𝟐𝒙𝒚 + 	𝝅	 𝐬𝐢𝐧 𝒚 = 𝟐𝝅 

Solution: 

 

Problem 8: Consider the graph of 𝑥0 + 𝑦0 = 49.  
a) What would be the new equation if the graph is shifted 3 units down and 2 units left?  
b) Sketch the graph of the new equation.   

Solution: To make a vertical shift of 3 units down add 3 units to y value. To make a 
horizontal shift of 2 units left add 2 units to x value.  New equation: 𝑥 + 2 0 + 𝑦 + 3 0 =
49. 

The original graph is a circle centered at (0,0) with radius 7. The new graph is the same circle 
whose center is at (-2,-3). 



	

	

Problem 9: Below is the graph of a function g(x) defined in the interval [1, 3]:  

 

a) At which points g(x) does not have limit? 
b) At which points g(x) is not continuous? 
c) At which points g(x) is not differentiable? 
 
Solution: 
a) None 
b) x=3 
c) x=2 and x=3 


